Jﬁ%&wms INTERNATIONAL TERMINALS

The Allosaurus’

Chris Leitch, Clayton Fielding,

Jared Hardinger, and Jared Lyman

Texas International Terminals (TIT) is a seaport in Galveston
Texas specializing in the loading and offloading of granular product.
TIT is expanding and as such needs a more sophisticated method of
keeping track of product.

Starting in January 2011, The Allosaurus’ designed a database
and front end for TIT. This database is designed to record, monitor,
and make reports for inbound and outbound shipments. This project
was for an advanced database management class at Utah State
University in the Jon M. Huntsman School of Business and was
finished April 2011.

MIS 4330 JON M.
Dr. David Olsen HUNTSMAN
SCHOOL oF BUSINESS

April 28, 2011 UtahStateUniversity

Contents

Overview and SCOPE OF PrOJECT........ccuiiieieee ettt ee e e 3
DT o | U LSS 7
Database DIAGIAMccueiieiieie ittt e st e st et e s be e be e e e saeesteesaeeneenaeeneeeneenres 7
R R D T Vo - SO STRS 8
LA LTSRS 9
USEE IMTANUAL ... bbbttt b bbbt b et e e et bbb e been e 11
THE DALADASE ...ttt bt bbb enes 11
(OF: 1 1= o - SO OSSOSO 11

L0 T o 0 OSSPSR 11

(O 17T o1 £ PR 12
(@] 01 £ SRS 12
OULDOUNT SNIPMENTS.......cuiiiiie et 12
ShIPMENTS RECEIVET. ... 13
SUPPHIEES bbbttt bt bbbttt e bbb 13

O LT £ S TSRS PP RPN 13

LI LCILO KL g 11 =T - Ut SR 14
LOGOING TNt bbbttt bbb 14
MOGITYING DALA......c.eieiieiiiiiet bbbt b bbb b eneas 15
REPOITS ...t nnns 16
(O] Tod [1S o] USSR 19

F AN o]0 1=] o [PSSP UROPR 20
Y 0] (=T0 I (o TolTo (U= TR 20
SUPPHErS UNSOI INVENTOTY ...ccviiiiiciie sttt 20
Total Volume Shipped Per Client and Data............ccccveiieiiiiiii i 21

LI [0 0T TSROSO 21
UPAALE DALE ...ttt ettt et e e bt et e e r e r e nra e beennes 21
Update Short Tons Shipped for Updates and INSErtS.........ccccvovveviieiiievie i 21
Update Accountable Shipments RECEIVETc.covveiiiiiiiiieiie e 22
USEr INLErTACe SNIPPELS ...ttt b e sb e aesreesbe e b 23
Query Generation for Find Shipments by Date Range Reportccocveieeiiiniienieennn 23
Exporting @ DataSet 10 EXCEl.........ccoveiiiiiiiee et 25

A Class to Add a Context Menu t0 @ DataGridVIEW...........cccooeriiiiininiieienene e 26

Overview and Scope of Project

At the beginning of the semester, we were faced with a fairly daunting challenge. We
were organized into realistically-assigned groups with the challenge to create a database that
would actually help a real-life shareholder. Fortunately, one of our group members presented an
excellent idea early on. Clayton suggested that we make a database for the company that his
father currently works for: Texas International Terminals. Clayton explained to the group that
TIT was in dire need of an efficient database; they were currently using Microsoft Excel to store
and organize all of their important data! We decided as a group that this would be the perfect
shareholder to build a database for.

Clayton briefly described what Texas International Terminals did as a company, but we
needed a little more information regarding the business processes and relationships. To get this
vital information, we connected with Matt Haidinyak, a Texas International Terminals (T.I.T)
employee who is in charge of recording much of the shipment and inventory data. Over a
conference call, Matt explained the intricate details of how T.1.T operated. Over the course of a
few phone conversations and many questions from us, we finally got a pretty good hold on what
T.L.T is about. To summarize, T.L.T is basically a third party logistics company; they unload
large amounts of cargo from large ships, store the cargo in their warehouse, and eventually load
them on trucks, railcars, and/or river barges to be shipped to other companies. Matt was very
helpful throughout the entire process. He was very willing to take the time to help us and clearly
answer our questions.

Once we had decided we learned T.I.T*“s business rules and processes, we began creating
the design for the database. We started by determining which tables and relationships were

needed. We took those tables and the relationships between them and made an ER diagram.

After spending three to four hours on the design alone, we started to confuse ourselves and we
decided to ask Dr. Olsen for a little help. He gave us some simple advice and we got rid of a few
tables and relationships. In about 10-15 minutes we got the help that we really needed and it
saved us a lot of time and effort. In hindsight, we learned that it is important to keep your design
simple and not to overanalyze relationships and tables. We also learned how helpful it can be to
ask for some guidance and advice from someone with experience.

Once we had finalized our ER diagram and database design, we determined that we
needed to start actually creating the tables and relationships in SQL Server. First we created a
user account for our group, which we called Texas Shipping. We all had the password to the user
account and we were ready to go, so we divided up responsibilities. Each person in the group
was given a few tables to create in our actual database. Once the tables were created, we decided
which stored procedures and triggers would be needed to create an effective database and end-
user program that would be of use to Matt at Texas International Terminals.

We created about six stored procedures when all was said and done. Each stored
procedure would be used in the GUI that we would create. Many of the stored procedures we
made were used to insert rows into tables. For example, the stored procedure sp_InsertCargo
allows the user to input data into a new cargo tuple. Upon executing the stored procedure, the
user enters the data for each column in the tuple. Continuing the example, a user would enter a
unique CargolD and a CargoName.

The triggers we used were also very important to the database. Many of our triggers fired
when a row was inserted or updated. One trigger calculates an important measurement
(ShrinkAmount) needed by Texas International Terminals when the row was updated or inserted.
This trigger takes the value of one column (ShortTonsShipped) in the inserted or updated row,

multiplies it by another user-entered value (ShrinkPercentage) and then inserts that value in

another column (ShrinkAmount). Previously this trigger was done manually by Matt in Excel, so
this trigger and all of our other triggers make the process of calculations a lot more efficient.

Throughout the process of creating tables, relationships, stored procedures, and triggers,
we ran in to many problems and bugs in our SQL. We did a lot of research (using Google) and
group problem solving to figure out the solutions. We also hit some road blocks when we
redesigned a few of the tables and added some necessary rows. These added rows threw off both
our stored procedures and our triggers, so we had to go in to each stored procedure and trigger
and debug and add code where it was needed.

During the process of creating the database, Chris began working on a GUI that Matt and
others at Texas International Terminals could easily use. Chris created the program using C# in
Visual Studio. He spent many hours on the program, which eventually had somewhere from
2000 to 3000 lines of C# code. Chris connected the program to the database and utilized our
stored procedures and triggers to create an excellent, user-friendly program. The program
allowed users to edit (UPDATE in SQL) and create (INSERT) new rows. This functionality of
the program is directly tied to the stored procedures that we created for that very purpose. Along
with these options, the program is able to create useful reports specified by the user, such as total
cargo shipped for a specific supplier or client. We determined which reports were most helpful
by communicating with Matt; he told us what he would like to see in a report, so Chris created
the flexibility for a user to choose the specifications for each report. There is also an option to
export the data from the reports to Excel, where users can format the data, create graphs, and
print.

The first time we showed Matt the program, we decided to use a free website that would
allow him to remote in and use Chris’s computer to access the program. When he saw the
program and Chris began to explain what it could do, all he could say was WOW for about five

solid minutes. He was very impressed with all that the program could do and the time that it

could save him in the future. Hearing the excitement in Matt’s voice was very rewarding; we
could tell that all of our work had made a difference for him. Unfortunately, Matt won’t be able
to use the program immediately because Texas International Terminals does not have any server
racks or DBMS installed on their network. We decided that doing that would have been a little
outside the scope and scale of this project. On the bright side, the database and an excellent
program to utilize it are ready for Texas International Terminals to use once they get everything
else in place.

Throughout this process we have learned a great deal of very useful information that we
would not have learned without this experience. We feel that the project was well worth our time
and effort. Each member of the group contributed to the final product, and in the end we

accomplished more collectively than we could have done individually. We experienced synergy.

Diagrams

Database Diagram

0
i
>

SupglierID

|

Cargo
% Cargald
CargoName
TnzartDate
UpdDat=
Calendar
9 ActusiDete -
e \
DeyNumber = =
YearNumber
SOt = Orders
D T
< L » e S
Supglier D
CoertID Suppliers
. Corgald 2 Supgierld
- — Scqplieatian
ReleaseTonnags drsenbate
OutboundShipments DsteOrgarad
§ Reeseld - P————
Ord=r1D e o
DeteShigped 8
= || [0
Y Seped =
ShortTonsSigped
RsicarlD
TnzartDate -
Clients
¢ CoeID
CompanyName
TnzartDat=
UpdDst=

ER Diagram

ShipmentsReceived

-| Outbound Shipments

Timeline

December 21, 2010 Clayton contacted Texas International Terminals about creating a database

December 29, 2010 Received Excel spreadsheet data from Matt Haidinyak, Director of Sales
and Traffic at Texas International Terminals

January 18, 2011 Began organizing the data from Excel and creating an ER diagram
January 20, 2011 Emailed Matt questions about the business process recorded in Excel
January 21, 2011 Received Matt’s response to questions

February 3, 2011 Emailed Matt to schedule a time for him to walk us through the business
process

February 7, 2011 Arranged to get pictures of the shipping process
February 8, 2011 Scheduled a phone meeting with Matt for February 9

February 9, 2011 Talked with Matt on the phone and discussed the business shipping
process

February 17,2011 Modified ER Diagram in response to Matt’s explanation

February 22,2011 Met with Dr. Olsen and got advice on diagram. Simplified and finalized
the diagram

February 24,2011 Set up our database account with Dr. Olsen

March 1, 2011 Created the necessary tables, attributes, relationships and constraints in
SQL Server

March 10, 2011 Created stored procedures and triggers

March 17, 2011 Asked Matt questions about the database to make sure we were on track

March 22, 2011 Chris Leitch began programming a user interface

March 24, 2011 Jared Lyman, Clayton Fielding, and Jared Hardinger created stored
procedures to insert data into tables

March 29, 2011 Chris Leitch altered the shrink percent trigger. Jared Hardinger researched
user defined functions. Clayton Fielding began working on our class
presentation. Jared Lyman began documentation.

April 6, 2011 Scheduled a meeting with Matt for him to test the database and user
interface

——
©
—

April 8, 2011

April 12, 2011

April 14, 2011

April 19, 2011
April 20, 2011

April 21, 2011

Met with Matt using the phone and a remote desktop connection. He was
impressed by the interface.

Added functions and reports to the interface including a summary of all
shipments for each client (total tonnage shipped), a function to look up a
shipment for a specific release number, the ability to change the shrinkage
amount, fixed the function to add cargo to the database, added the ability
to export reports to Excel, and a function to determine how much cargo a
specific supplier still has in inventory.

Fixed and updated stored procedures. Created nested triggers so the
triggers would not call themselves

Finished preparing presentation
Practiced presentation in classroom

Gave presentation in class

——

]
101

User Manual

The Database

The database is made up of 8 tables. Each table has two common columns: an insert date and an
update date. These are simply used in order to tell us when a row was initially put into the
database and then to tell us when they were updated. The insert date is added when we run a
stored procedure to insert data, and the update date is changed by a trigger every time we change
arow. That is all the explanation necessary for these common columns and | will not discuss
them in the description of each table. I will cover each of these tables briefly:

Calendar
The Calendar table contains the following columns:

Column Mame Data Type Allow Mulls
il ctuziDate| datetime]
MonthMName char(15)
DayMNumber int
YearMumber int
DayOfivesk char(15)
DayType char(15)

This is a simple calendar table. It contains dates, month names, day and year numbers, days of
the week, and day types. We use this to validate dates in the tables. This may also be used in the
future in case we ever need to know when weekends or things of that sort are.

Cargo
The Cargo table contains the following columns:

Column MName Data Type Allow Mulls
v nt &
CargoMame wvarchar{50) |
InsertDate datetime
UpdDate datetime

The cargo table simply holds the Cargo ID and Cargo Name. This is useful to know what cargo
has been received for a specific supplier and helps us know what is in our inventory of each type
of cargo. The name is there solely for clarity and convenience. This table would interact in the
same way even if it were just ID numbers.

——

]
111

Clients
The Clients table contains the following columns:

Column Name Data Type Allow Mulls
[dRCientiD] int [
CompanyMame varchar(50) =
InsertDate datetime
UpdDate datetime

This table, much like the cargo table, only has two useful fields, a Client ID and a Client Name.
This table is utilized when determining what client a shipment is going to and what client has
ordered product.

Orders
The Orders table contains the following columns:

Column Mame Data Type Allow Mulls
e int F
SupplierID int [l
ClientID int [l
CargolD int [l
TonnageShipped dedimal({10, 4
ReleaseTonnage dedmal{10, 4)
DateOrdered datetime
InsertDate datetime
UpdDate datetime

This table holds orders for product. It tells us what supplier the product is coming from, what
client ordered the product, and what cargo they ordered. It also contains the total tonnage
shipped for this order (updated by a trigger in the Outbound Shipments table) and the release
tonnage. These can be compared to see if an order has been completely filled or not. It also tells
us the date it was ordered.

Outbound Shipments
The Outbound Shipments table contains the following columns:

Column Mame Data Type Allow Mulls

[3% varchar({14) [l
CrderID int [l
DateShipped datetime [l
LbsShipped decimal{18, 4) [l
ShortTonsShipped
RailcarlD varchar{14)
InsertDate datetime
UpdDate datetime

[

This table holds all the shipments that we have sent to clients. It takes a Release ID primary key
and an Order ID foreign key. This relates the table to the orders table so we know what order the

——

]
121

shipment is for. We then hold the date the product was shipped and thou pounds shipped. Short
Tons Shipped is a derived column that takes the pounds shipped and divides it by 2000. Railcar
ID is only populated if a shipment has a railcar release number; otherwise, it is null.

Shipments Received
The Shipments Received table contains the following columns:

Column Mame Data Type Allow Mulls
(AR hipmentID int [
SupplierlD int [
CargelD int [l
VesselMame wvarchar(50)
ShortTonsReceived decimal (10, 4)
ShrinkAmount decimal(10, 4)
ShrinkPercentage dedmal(8, 7)
ShortTonsAccountable decmal (10, 4)
CommenceDate datetime
CompletionDate datetime
FreetimeEndDate datetime
InsertDate datetime
UpdDate datetime

This table holds all the shipments that we have received from suppliers. It contains a Shipment
ID which is the primary key and also two foreign keys: Supplier ID and Cargo ID. In this way
we can tell what supplier the shipment came from and the cargo we received. We also hold a
Vessel Name that tells us the ship that the shipment came on. We enter in the Short Tons
Received and the Shrink Percentage and triggers in the table then calculate the Shrink Amount
and Short Tons Accountable. The user also enters a Commence Date (when the ship started
being unloaded), a Completion Date (when we finished unloading the ship), and a Free Time
End Date that tells us when the suppliers free time for this shipment ends.

Suppliers
The Suppliers table contains the following columns:
Column Mame Data Type Allow Mulls
S ooi=r0) int B
SupplierMame varchar(50) [l
InsertDate datetime
UpdDate datetime

This table simply holds a Supplier ID and a Supplier Name. We use this to tell us what
shipments belong to what suppliers and also what suppliers are supplying product for what
orders.

Users
The Users table contains the following columns:

——

]
131

Column Name Data Type Allow Mulls
L7 | varchar{10)
IUsername varchar(50)
Password varbinary{50)
UserLevel int
InsertDate datetime
UpdDate datetime

This table is used solely for the user interface. It holds a User ID which is the primary key. It also
holds the username, the password (encrypted using PWDENCRYPT in SQL Server), and a user
level which is used to tell us what things the logged in user can do in the user interface. Mainly,
this is used to tell us if a user is an administrator or not.

The User Interface

Logging In

You may interact with the database using the program. When you first open the program you
will be required to log in. The accounts are stored in the Users table and hold a user 1D,
username, password (encrypted using the build in SQL function) and permissions level. The
permissions level determines whether or not you can delete data from the program.

Texas International Terminals
Shipping Database

Password:

If you do not have a username, you will not be able to interact with the program past this screen.
You may click cancel to exit. Users that are added to the database while the program is running
will not be able to log in until the program has been restarted.

—

)|
141

Modifying Data

The main screen of the program allows you to add, edit, and view all the main aspects of the
database including: Orders, suppliers, shipments, cargo, and clients. You will find that the layout
of each of these options is quite similar. They all have a screen that has two tabs, one for adding
data, and one for viewing and modifying data, like so:

% Outhound Shipments [=5] [% Outbound Shipments =
: Add Outbound Shipmert | View and Edit Outbound Shipments Add Outbound Shipment [¢ View and Edif Oitbolnd Shipments |
ReleaselD OrderlD DateShipped LbsShipped Short TonsShipped +
Date Shipped: ~ Monday . Aprl 25,2011 [~ 12 100013 121272011 12340000 0.617000000 3
Lbs Shipped 123458 100013 12/12/2011 1234.0000 0617000000
123460 100006 1212201 12340000 0.617000000 | &
Short Tons will be calculated when order is added. 123461 100012 12127201 1234.0000 0617000000
Supplier: Transammenia, Inc. - 123462 100013 12127201 1234.0000 0.617000000
OrderlD SupplierlD TonnageShipped ~ ReleaseTonnage DateOrdered o~ 122453 100003 Zzam 12344.0000 6172000000
Z ‘E 123464 100013 12127201 1234.0000 0.617000000
100010 10000 37,0000 11954.0000 /3172010 B 123466 100012 12127201 123.0000 0.061500000
100008 10000 481340 2513.0000 §/12/2010 12541 100014 12127201 543780000 27.435000000
100007 10000 57,0000 9637.0000 2/7/2010 12542 100014 1212201 54878 0000 27435000000
100005 10000 258365 14385.0000 11/23/2010 < 12543 100014 1212 54878.0000 27435000000
12544 100014 12127201 54378.0000 27.435000000
Selected Order: 100009 for Transammonia. Inc
12545 100014 12127201 54878.0000 27.435000000
[Is this a rail shipment? 12546 100014 121272011 54878.0000 27435000000
12547 100014 121272011 54378 0000 7.435000000 52

Currently displaying the 1000 most recent shipments.

Add Shipment Reflesh | | Edt Selected Shipment

You may also right click on any of the items to delete them from the database. Note: You will
only see this menu appear if you have administrator privileges. Also, some items will give you
an error when you try to delete them if other pieces of data rely on them. For example, an order
that has shipments tied to it cannot be deleted and will give you an error message.)

Also on this screen you will see a refresh button. This button is useful after you have added data
and you want to verify it’s accuracy without closing and reopening the edit window. It will pull
the data from the database and display it in the output panel.

Beyond that, data may also be modified by clicking the edit button. This will give a screen
almost identical to the add screen you see when entering data for the first time. The only
difference being that the data is populated to reflect the current data in the database.

——

]
151

Reports

At the top of the main screen you will find a menu bar that allows you to view different reports

about the data.

+% Texas International Terminals -- Shipping _
Reports

| Shipments
Crders

L4 | Shipments by Date Range

L4 Find Shipment by Release Mo.

FXAS INTERNATION

Suppliers 3

Clients

Cargo

| «

All reports can export the relevant data to excel to be transformed further (made into graphs, etc.)

or be printed.

Total Shipments within Date Range
This is an example report of all shipments in the Outbound Shipme

nts table. You can see there

are a number of check boxes by which to modify the results you get from the report. Here you
can narrow down the results by supplier, cargo, client, date, or a combination of all four. You
may also simply view all shipments ever made or find an order by order number.

% Texas Intemnational Terminals -- Shipping Database
Reports

==ir=]

4800 OLD PORT INDUSTRIAL BOULEVARD | GALVESTON, TX 77552 | 409.762.5400 (p) | 409.762.1915 (f)
Orders

TEXAS INTERNATIONAL TERMINALS '3('] é 6 O TEXAS
=]

IEXAS

w | »

LTEXAS

TEXAS

Total ST Shipped: 1092.365500000 tons

% Total Shipments Within Date Range
Inbound
Select Date Range: Refine Search: Find Order Only:
Mondzy . Apil 25,2011 [T] Find Supplier: Transammonia, Inc. - [C] Find Order: 100000
Outbound
Menday . April 25,2011 [T] Find Cargo: Granular Urea -
Don't Restrict by Date [Find Client Buddys Flart Plus .
ReleaselD SupplierlD OrderlD Date Shipped LbsShipped Short Tons Shipped
12330 10001 100013 1/1/2001 25487.0000 12743500000
() GGU71722 10000 100007 1/3/2010 45067.0000 24.533500000
GGU83123 10000 100011 1/6/2010 42120.0000 21.060000000
GGU63539 10000 100006 1/9/2010 51180.0000 25.550000000
GGU43847 10001 100004 2/12/2010 463360000 23.162000000
‘ GGU31610 10001 100004 3/3/2010 46525.0000 23.262500000
k GGU38536 10000 100000 3/4/2010 53454 0000 26.727000000
.ﬁ% GGUS7480 10000 100005 3/8/2010 51673.0000 25.836500000
A GGU51868 10000 100009 3/20/2010 46605.0000 23.302500000
GGUB1517 10001 100001 3/25/2010 56576.0000 28.438000000
GGUGED8 10000 100000 3/30/2010 44762 0000 22.381000000
4 GGU30241 10001 100001 3/31/2010 46410.0000 23.205000000
S

FEXAS

Export to
Excel

4800 OLD PORT INDUSTRIAL BOULEVARD | GALVESTON, TX 77552 | 409.762.5400 (p) | 409.762.1915 (f)

K v
™, ’

A

Find Shipment by Release Number

You may also find shipments based on their release number. This will find any shipments that
have the search value in any portion of the release number. From here, you may see the shipment
details of the selected shipment, and from there you may see all shipments for the order that
shipment came from.

% Texas Intemational Terminals - Shipping Database

Reports
4800 OLD PORT INDUSTRIAL BOULEVARD | GALVEST(¥ Total Shipments Within Date Range = B
ors L
Select Date Range Refine Search: Find Order Only:
* Show Shipment Details === N My . Ami 25,2011 | Supplier | Transammoris, e Find Order. [100007
Suppliers | Start Date y . .
Shipment ID GGU12422 Monday . Aprl 2 Granular Urea
Shipments Order Number 100007 ESTH Find Clies Buddys Plart Plus (o
Outbound Date Shipped: 06-13-2010
e ReleaselD SuppiierlD OrderlD DateShipped LbsShipped ShortTonsShipped
Client JimHicks | Y
Cargo Supplier: Transammonia Inc GGU12422 10000 100007 6/13/2010 58157.0000 29.078500000
Cargo: Granular Urea | GGU36441 10000 100007 8/7/2010 441510000 22075500000
ST Shipped: 29.078500000 EST |
Clients
TEXAS INTERNATIONAL TERMI
% Find Shipment by Release Number =] i
Release Number: GGU B
Find
()
” TEX/\ ReleaselD OrderlD DateShipped LbsShipped ‘Short TonsShipped B
GGU12422 100007 §/13/2010 58157.0000 29078500000 H ot TEEFETTIT s
GGU13433 100000 4/24/2010 45557.0000 22798500000
GGU21367 100009 7/14/2010 46211.0000 23105500000 T X
‘ GGU21934 100000 3/4/2011 50001.0000 “
) GGU22643 100009 10/21/2010 52673.0000 26336500000 oy
) L/]
I acuss roomnz w2 27 ps4000000] TEXAS INTERNATIONAL TERMINA
GGU26503 100010 6/24/2010 46449.0000 23224500000
GGU31610 100004 3/3/2010 46525.0000 23.262500000 S
5(R 4800 OLD PORT INDUSTRIAL BOULEVARD | GALVESTON, TX|
L [Show Shipment Dt of Selected Row_| JL I
ata [EXA t_—‘x I a s TEXAQ INTERNATIONAL TERMINA -
— — — —

Unfilled Orders

This report displays all orders that do not have a shipped tonnage equal to or greater than the
release tonnage. Within this report you may narrow it down by supplier, cargo, client, or some
combination of the three. You may also find the shipments for the selected order based on what

row you have selected in the output panel.

Refine Search:
Find Supplier: Transammoria, Inc.

Find Cargo: Granular Ures

Find Client

3177201

This report displays a supplier’s unsold inventory. This report also allows you to narrow down
your result by cargo so you may find the amount of a specific cargo that a supplier has not yet
sold. This report does not allow you to export it to Excel as it consists of a single row of data.

% Texas Intemational Terminals — Shipping Database o [@][=

Reports

% Supplier's Unseld Inventory =

Supplier. Transammoria, Inc - Refine Search:

Find Unsold Inventory. Find Cargo: Granular Urea -

Unsoldinventary

Conclusion

This covers all the capabilities of the program at present. There is much room for improved
report generation and a greater variety of reports available. Also, there is currently no convenient
method to modify data for the Orders table due to time constraints and this is something that
should be added before the application is considered to be fully usable for production purposes.

Other areas that are suggested to be modified:

e The way that data is pulled may be heavy on the database. A possible course of action is
to pull all the data when the program first opens and then only query the database when
you have modified the data. This may be inconvenient if multiple people will be
modifying data simultaneously, but will put less load on the server.

e The password should be better encrypted by some sort of hashing mechanism and on top
of that the hash should then be salted to ensure maximum security.

® There could be some more constraints in order to reduce human error. For example, some
text boxes should only allow the input of digits (one or two do this at present). Also, the
text of textboxes is input directly into a string that turns into a query run against the
database. This leaves the program open to SQL injection, both malicious and inadvertent.

——

]
191

Appendix

Stored Procedures
We used stored procedures to insert any new information into the database and for calculations.

Insert Cargo
This is when TIT is starting to handle a new product and needs to insert a new product into the
database.

ALTER PROCEDURE [dbo].[sp InsertCargo]
@CargoName VarChar (50)

AS
IF NOT EXISTS (SELECT *
FROM Cargo
WHERE CargoName=@CargoName)

BEGIN
INSERT INTO Cargo
VALUES (
(SELECT MAX (CargolID) +1
FROM Cargo),
@CargoName,
GETDATE (),
NULL
)
END
ELSE
BEGIN
RAISERROR ('This cargo name is already in database',11,1)
END;

Suppliers Unsold Inventory
This stored procedure gives the unsold inventory for a given supplier

ALTER PROCEDURE [dbo].[sp_ SuppliersUnsoldInventory] @supplierID INT
AS
SELECT s.SupplierName AS Supplier, (SELECT SUM(ShortTonsReceived)
FROM ShipmentsReceived
WHERE SupplierID = (@supplierID) -
o.TotalShipped AS UnsoldInventory
FROM Suppliers AS s

JOIN

(SELECT SupplierID, SUM(ReleaseTonnage) AS TotalShipped
FROM Orders
WHERE SupplierID = (@supplierID
GROUP BY SupplierID) AS o
ON (s.SupplierID = o.SupplierID)

Total Volume Shipped Per Client and Data
This give the total volume shipped for a given client between a beginning date and end date.

ALTER PROCEDURE [dbo].[sp TotalVolumeShippedPerClientAndDate]
(

@clientID VarChar (50),

@StartDate Date,

@EndDate Date

AS
BEGIN

SELECT SUM(o.ReleaseTonnage) AS ReleaseTonnage
FROM Clients AS ¢ JOIN Orders AS o ON
(c.ClientID=o.clientId)
WHERE o0.ClientID = @clientID AND o.DateOrdered BETWEEN @StartDate
AND @EndDate
END;

Triggers

Update Date

This trigger we put on every table to insert and update the date when a tuple is updated.
/*This trigger inserts/updates the data in the UpdDate attribute when a tuple
is updated*/

ALTER TRIGGER [dbo].[tr ClientsUpDateUpdDate]

ON [dbo].[Clients]

FOR UPDATE

AS

UPDATE Clients SET Clients.UpdDate=getdate ()

FROM Clients INNER JOIN Inserted ON Clients.ClientID= Inserted.ClientID

Update Short Tons Shipped for Updates and Inserts
These triggers will update the short tons shipped when a shipment is either entered or updated.

ALTER TRIGGER [dbo]. [updShortTonsShipped]
ON [dbo]. [OutboundShipments]
FOR insert
AS
DECLARE @OrderID AS int
DECLARE (@LbsShipped AS int
DECLARE @ShortTonsShipped AS decimal (10, 4)
SET @OrderID = (SELECT OrderID FROM inserted)
SET @LbsShipped =
(SELECT SUM (LbsShipped)
FROM OutboundShipments
WHERE OrderID = @OrderID)

SET @ShortTonsShipped = (@LbsShipped / 2000)
UPDATE Orders
SET TonnageShipped = (SELECT SUM (ShortTonsShipped) FROM

OutboundShipments WHERE OrderID = @OrderID)
WHERE OrderID = @OrderID

ALTER TRIGGER [dbo]. [updShortTonsShippedUpdated]
ON [dbo]. [OutboundShipments]
FOR update
AS
DECLARE @i INT, @d INT
SELECT @i = COUNT (*) FROM inserted;
SELECT @i = COUNT (*) FROM deleted;
DECLARE @OrderID AS int
DECLARE @LbsShipped AS int
DECLARE @ShortTonsShipped AS decimal (10,4)
SET @OrderID = (SELECT OrderID FROM deleted)
SET @LbsShipped =
(SELECT SUM (LbsShipped)
FROM OutboundShipments
WHERE OrderID = @QOrderID)

SET @ShortTonsShipped = (@LbsShipped / 2000)
UPDATE Orders
SET TonnageShipped = (SELECT SUM (ShortTonsShipped) FROM

OutboundShipments WHERE OrderID = @OrderID)
WHERE OrderID = @OrderID

Update Accountable Shipments Received
This trigger calculates the amount of product that TIT is accountable for from each shipment.

Without the TRIGGER_NESTLEVEL, the trigger would repeat itself, With the
TRIGGER_NESTLEVEL, it only fires once.

ALTER TRIGGER [dbo]. [updAccountableShipmentReceived]

ON [dbo] . [ShipmentsReceived]
FOR update, insert AS
IF TRIGGER NESTLEVEL () > 1
RETURN
DECLARE @ShrinkPercentage AS decimal (8,7)
DECLARE @ShrinkWeight AS decimal (10,4)
DECLARE @ShipmentID AS int
SET @ShrinkPercentage (SELECT ShrinkPercentage FROM inserted)

SET @ShrinkWeight = (SELECT ShortTonsReceived FROM inserted) *
@ShrinkPercentage
SET @ShipmentID = (SELECT ShipmentID FROM inserted)
UPDATE ShipmentsReceived
SET ShortTonsAccountable = (SELECT ShortTonsReceived FROM
inserted) - @ShrinkWeight,

ShrinkAmount = @ShrinkWeight WHERE ShipmentID = @ShipmentID

User Interface Snippets

Query Generation for Find Shipments by Date Range Report
This code generates a query based on different options selected in the “Find Shipments
by Date Range” report. It also determines an appropriate label to display the result for the user.

private void btnTotalShipped_Click_1(object sender, EventArgs e)
{

dateTimePickerl.Value.ToString("MM/dd/yyyy");
dateTimePicker2.Value.ToString("MM/dd/yyyy");

string query
string datel
string date2

if (chkFindOrder.Checked)

{
query = "SELECT ReleaseID, SupplierID, o.0OrderID, DateShipped,
LbsShipped, ShortTonsShipped FROM OutboundShipments AS os JOIN Orders AS o ON (os.OrderID
= 0.0rderID) WHERE os.OrderID = " + numOrderNo.Value.ToString() + " ORDER BY
DateShipped;";
}

else

{
if (!chkDateRestriction.Checked)

{
//Determining the Query
query = "SELECT ReleaseID, SupplierID, o.0OrderID, DateShipped,
LbsShipped, ShortTonsShipped FROM OutboundShipments AS os JOIN Orders AS o ON (os.OrderID

= 0.0rderID) WHERE DateShipped BETWEEN '" + datel + "' AND '" + date2 + "' ";
if (chkSuppliers.Checked == true)
{
query = query + "AND SupplierID = " +
cmbSupplierNames.SelectedValue;
}
if (chkCargo.Checked == true)
{
query = query + "AND CargoID = " + cmbCargo.SelectedValue;

}
if (chkClient.Checked == true)

{
query = query + "AND ClientID = " + cmbClient.SelectedValue;
}
query = query + " ORDER BY DateShipped;";
}
else
{

//Determining the Query
query = "SELECT ReleaseID, SupplierID, o.0rderID, DateShipped,
LbsShipped, ShortTonsShipped FROM OutboundShipments AS os JOIN Orders AS o ON (os.OrderID
= 0.0rderID) WHERE 1=1 ";
if (chkSuppliers.Checked == true)
query = query + "AND SupplierID = " +
cmbSupplierNames.SelectedValue;

if (chkCargo.Checked == true)

{
query = query + "AND CargoID = " + cmbCargo.SelectedValue;
}
if (chkClient.Checked == true)
{

query = query + "AND ClientID = " + cmbClient.SelectedValue;

}
query = query + " ORDER BY DateShipped;";

}
DataSet ds2 = new DataSet();
SqlDataAdapter dbOrders = new SqlDataAdapter(query, myConn);

dbOrders.FillSchema(ds2, SchemaType.Source);
dbOrders.Fill(ds2);

string totalShipped = ds2.Tables[0].Compute("SUM(ShortTonsShipped)",
string.Empty).ToString();

if (totalShipped == "" || totalShipped == null)
1blShippedSum.Text = "";

}

else

{
1blShippedSum.Text = totalShipped + " tons.";

}

dsExp = ds2;

dgvOutput.DataSource = ds2.Tables[0];
dgvOutput.Columns[dgvOutput.Columns.Count - 1].AutoSizeMode =
DataGridViewAutoSizeColumnMode.Fill;

if (totalShipped == "" || totalShipped == null)

{
if (chkDateRestriction.Checked)

1blTotalSTShipped.Text = "Nothing has been shipped";
}

else

n non

+ datel + +

1b1lTotalSTShipped.Text = "Nothing was shipped from
date2;

}

else

{
if (chkDateRestriction.Checked)

{
}

else

{

1blTotalSTShipped.Text = "Total ST Shipped";

1blTotalSTShipped.Text = "Total ST Shipped from " + datel + "-" +
date2;

}

if(chkSuppliers.Checked == true)

dsSuppliers.Tables[@].PrimaryKey = new System.Data.DataColumnl[]
{dsSuppliers.Tables[@].Columns[@]};

DataRow foundRow =
dsSuppliers.Tables[0].Rows.Find(cmbSupplierNames.SelectedValue);

1blTotalSTShipped.Text += " for " + foundRow[1];

(1
| %)

¥
if (chkCargo.Checked == true)

{
dsCargo.Tables[@].PrimaryKey = new System.Data.DataColumn[] {
dsCargo.Tables[@].Columns[@] };
DataRow foundRow = dsCargo.Tables[@].Rows.Find(cmbCargo.SelectedValue);
1blTotalSTShipped.Text += " of " + foundRow[1];

if (chkClient.Checked == true)

{
dsClients.Tables[@].PrimaryKey = new System.Data.DataColumn[] {
dsClients.Tables[@].Columns[@] };
DataRow foundRow =
dsClients.Tables[@].Rows.Find(cmbClient.SelectedValue);
1blTotalSTShipped.Text += " to " + foundRow[1];
}

1b1lTotalSTShipped.Text += ":";
1blShippedSum.Left = 1blTotalSTShipped.Right-3;

}

Exporting a DataSet to Excel
This exports a DataSet to an Excel spreadsheet. It converts the column names of the given
DataSet to bold and underlined header cells.

public void export(DataSet ds)
{
try
{
//Create a new Excel Application instance, with a new workbook with one
worksheet.
excelApp = new Microsoft.Office.Interop.Excel.Application();
workbook = excelApp.Workbooks.Add(X1WBATemplate.x1WBATWorksheet);
sheet = (Worksheet)workbook.Worksheets[1];

//Rename the worksheet.
sheet.Name = "Yodito Computer Inventory";

DataRow[] foundRows;
int numCols = ds.Tables[@].Columns.Count;

//Create an array from our Dataset.
foundRows = ds.Tables[@].Select();

//Make the header cells.
sheet.get_Range("A2", "L2").Font.Bold = true;
sheet.get_Range("A2", "L2").Font.Underline = true;

//Populate the rows below until we've populated all the rows we found in
our Dataset.
for (int j = ©; j < foundRows.Length; j++)

{
for (int i = @; i < numCols; i++)
{
sheet.Cells[2, i + 1] = ds.Tables[@].Columns[i].Caption;
sheet.Cells[j + 3, i + 1] = foundRows[j][1i];
}
¥

//0Once everything is populated, show us the Excel application.

excelApp.Visible = true;

}
finally
{
//Empty the objects we used.
excelApp = null;
workbook = null;
sheet = null;
}

}

A Class to Add a Context Menu to a DataGridView

This class adds a context menu to a data grid view that gives the user the option to delete a cell.
It also handles the ability to right click on a row and select it (as opposed to the default of only
being able to left click and select a row)

class addDGVContextMenu

{

static
static
static
static
static
static
static

public

public

ContextMenuStrip mnu = new ContextMenuStrip();
ToolStripMenuItem mnuDelete = new ToolStripMenultem("Delete");
DataGridView dgvSelect;

string t;

string id;

SqlConnection myConn;

Button refresh;

static int userlLevel;

static void addMenu(DataGridView dgv, string Table, string pkID,

SqlConnection conn, Button btnRefresh)

{

mnu

= new ContextMenuStrip();

mnuDelete = new ToolStripMenuItem("Delete");
dgvSelect = null;

t
id

null;
= null;

if (userLevel == 1)

{

//Assign event handlers

mnuDelete.Click += new EventHandler(mnuDelete_Click);
//Add to main context menu

mnu.Items.AddRange(new ToolStripItem[] { mnuDelete });
//Assign to datagridview

dgvSelect = dgv;

dgvSelect.CellMouseClick += new

DataGridViewCellMouseEventHandler (dgvClick);

}

t = Table;

id = pkID;

myConn = conn;
refresh = btnRefresh;

private static void dgvClick(object sender, DataGridViewCellMouseEventArgs e)

{

if (e.RowIndex >= 0 && e.ColumnIndex >= © & e.Button == MouseButtons.Right)

{

dgvSelect.ClearSelection();
dgvSelect.Rows[e.RowIndex].Selected = true;

(1
| %)

Rectangle r

e.RowIndex, true);

}

dgvSelect.GetCellDisplayRectangle(e.ColumnIndex,

mnu.Show((Control)sender, r.Left + e.X, r.Top + e.Y);

private static void mnuDelete_Click(object sender, EventArgs e)

{

string query =

try

"System.String")

)

if (dgvSelect.SelectedRows[0].Cells[@].ValueType.ToString() ==

{
query = "DELETE FROM " + t + " WHERE " + id + " = "" +
(string)dgvSelect.SelectedRows[0].Cells[@].Value.ToString() + "';";
}
else
{
query = "DELETE FROM " + t + " WHERE " + id + " = " +
dgvSelect.SelectedRows[0].Cells[@].Value.ToString() + ";";
}
}
catch (Exception ex)
{
MessageBox.Show("Error occurred.");
return;
}
if (MessageBox.Show("Are you sure you want to delete this row?", "Are you
sure?", MessageBoxButtons.YesNo) == DialogResult.Yes)
{

}

else

{
}

SgqlCommand insertCommand = new SglCommand(query, myConn);

try
{

insertCommand.ExecuteNonQuery();

}

catch (Exception ex)

{

MessageBox.Show(ex.ToString());

return;

}

MessageBox.Show("Row deleted.", "Deleted.");
refresh.PerformClick();

MessageBox.Show("User cancelled row deletion.", "Deletion cancelled.");

